FACTS ABOUT المعين REVEALED

Facts About المعين Revealed

Facts About المعين Revealed

Blog Article

المعين هو شكل هندسي يتكون من أربعة أضلاع أو جوانب لها نفس الطول، فمعرفة قياس طول ضلع واحد فيها يعني معرفة جميع أطوال الأضلاع الأخرى لأنها تكون بنفس القياس، كما تكون أضلاعها المتقابلة متوازية، كما يوجد للمعين ارتفاع يمكن قياسه من طول الخط الواصل بين منتصف الضلعين المتقابلين، ويتميز المعين بوجود قطرين أيضًا، ويكون قياسهما عبارة عن طول الخطوط التي تصل بين الزوايا المتقابلة مع بعضها البعض في المعين، ويتميز القطران بأنّه يتعامد كل منهما على الآخر كما أنهما يُنصّفان الزوايا التي يمران من خلالهما، أما زوايا المعين الأربعة فإن كل زاويتين متقابلتين في المعين متساويتين في القياس، حيث يكون زوجين من الزوايا حادتي القياس بينما الزوجين الآخرين منفرجتي القياس، أما إذا كانت إحدى زواياه قائمة فإنّه يتحول إلى مربع، وفيما يأتي ذكر أبرز طرق حساب المعين.[٢]

تمت الكتابة بواسطة: دانه نايفه آخر تحديث: ٠٦:١٥ ، ٢٩ نوفمبر ٢٠٢٢ اقرأ أيضاً تعريف الحق

المعين هو من الأشكال الهندسية here الرباعية؛ أي أنه يتكون من أربعة أضلاع، وهو يشبه متوازي الأضلاع، لكن يختلف عنه في أن أطوال أضلاعه تكون متساويةً، له أربع زاويا، كل زاويتين متقابلتين فيه تكون متساويتين، وكل ضلعين متقابلين فيه متوازيان.

صفحات للمحررين الذين سجَّلوا خروجهم تعلَّم المزيد مساهمات

قوانين حساب محيط المثلث يمكن حساب محيط أي مثلث حسب القانون الآتي: محيط المثلث = مجموع أطوال أضلاعه...

دور الذكاء الاصطناعي في رصد تفشي فيروس كورونا المستجد؟

المسرح والسينما رسل وأنبياء تجارب وخبرات طب

دور الذكاء الاصطناعي في رصد تفشي فيروس كورونا المستجد؟

لماذا كانت الإجابه غير مفيده الإجابة لا تحتوي على المعلومات التي أبحث عنها

المعين ويُلفظ بضمّ الميم، هو أحد الأشكال الهندسية رباعي الأضلاع ( مُضلّع رباعي بسيط) تتساوى أطوال هذه الأضلاع جميعها، أو يمكن تعريفه على أنه شكلٌ يتكوّن من مثلَثَين متساويَي الساقَين لهما قاعدة مشتركة وهذه القاعدة المشتركة محذوفةً، ويُعتبر على أنّه متوازي الأضلاع الضلعَين المتجاوبين فيه متساويَين، وكونَ المعين من المضلّعات فإنّ له محيطاً ومساحةً بقوانينَ خاصةٍ به.

مساحة المعين هي حجم السطح بداخله. يتم الحصول على مساحة المعينات باستخدام حجم أقطارها وجوانبها.

عند وضع المعين في دائرة، لن تلامس الدائرة جميع أضلاع المعين.

متساوي الأقطار  · متعامد الأقطار [الإنجليزية]  · دائري (ثنائي المركز) · مماسي (مماسي خارجي)  · لامبرت  · ساتشري

يعتبر حالةً خاصّةً من متوازي الأضلاع وحالةٌ خاصّةٌ من الدالتون.

انتقل إلى المحتوى القائمة الرئيسية القائمة الرئيسية

Report this page